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Abstract

The field of interactive proofs has seen significant developments in recent years, expanding the frontiers of secure
computation and zero knowledge proofs. Sailor (Sumcheck And GKR over Zpk vIa gaLOis Rings) introduces innovative
adaptations of Sumcheck and GKR protocols over the ring structure Z/pkZ. These protocols leverage Galois Rings and
Reverse Multiplication Friendly Embeddings, providing efficient alternatives for real-world computations over Z2k .

Our work establishes a theoretical foundation for these protocols, even considering the edge case with p being 2. We offer
a basic toolkit for ring-based cryptographic constructions, a new Sumcheck protocol over Zpk with minimal overhead and
two versions of the GKR protocol over Zpk . These advancements facilitate secure computations over rings.

Despite the exponential growth of zero knowledge proof protocols for secure computation, our paper addresses the gap in
adapting these protocols to ring structures, presenting one of the first constructions in this domain.

1 Introduction

An interactive proof is a type of protocol that allows
two parties, a prover and a verifier, to interact to
establish the truth or correctness of a statement or a
mathematical claim.

In recent years, the field of interactive proofs has
witnessed remarkable advancements that have ex-
panded the horizons of secure computation and zero
knowledge proofs. This paper builds on these ad-
vancements by introducing adaptations of Sumcheck
and GKR (Goldwasser-Kalai-Rothblum) protocols tai-
lored to the ring structure Z/pkZ. These adaptations
leverage sophisticated mathematical constructs such
as Galois Rings and Reverse Multiplication Friendly
Embeddings (RMFE) to push the boundaries of what
was previously attainable in cryptographic primi-
tives.

As the models of computation in real-life program-
ing and the computer architectures (such as CPU
words) are formulated as operations over the ring
Z232 or Z264 , protocols over Z2k are more efficient
when implemented. However the fact that half of
the ring Z2k are zero divisors presents non-trivial
technical difficulties. Although Z2k -arithmetic can be
emulated using prime moduli, this comes with an
unavoidable overhead.

Our study provides a rigorous theoretical founda-
tion for constructing these protocols, ensuring their
security and correctness within the Z/pkZ ring struc-
ture. It’s noteworthy that our approach accommo-
dates the case when p equals 2, catering to the de-
mand for hardware-friendly constructions, a crucial
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consideration in modern computing.
While the paper focuses on theoretical advance-

ments and mathematical insights, it lays the ground-
work for future practical implementations. Our work
contributes to the broader landscape of secure com-
putation and data protection by enabling the applica-
tion of Sumcheck and GKR protocols in ring-based
settings.

By combining mathematical rigor with practical
relevance, this research underscores the importance
of Galois Rings and Reverse Multiplication Friendly
Embeddings (RMFE) in expanding the cryptographic
toolkit, offering opportunities for secure computa-
tions and privacy-preserving applications in various
domains.

1.1 Our contributions

In this paper we propose the first constructions over
Zpk for several cryptographic primitives greatly used
in the world of secure computation and Zero Knowl-
edge Proofs. Both the Sumcheck and GKR protocol
constructions have a small overhead factors in com-
parison to the classic protocols, and in the GKR case,
maintain the succinctness of proof size and verifi-
cation time in the size of the arithmetic circuit rep-
resenting the statement C. Our work is based on
the classic constructions presented by Lund et al. in
[1] for Sumcheck and Chiesa et al. version of the
GKR from [2], a protocol originally introduced by
Goldwasser, Kalai and Rothblum in [3].

Basic toolkit for ring based cryptographic con-
structions: We propose and bring the the ring do-
main multiple tools widely used in the world of
cryptography and ZKP such as the Schwartz Zipple
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lemma or the idea of batching multiple claims by us-
ing a linear combinations. We bring more powerful
tools, namely, the reverse multiplication friendly em-
bedding (RMFE) techniques from the MPC literature
[4, 5, 6, 7, 8] into the literature of secure computation
and interactive proofs.

Sumcheck over Zpk : This paper features a new
version of the Sumcheck over any ring of the form
Zpk with just a O(log n) overhead factor respect to
the classic one, n being the security parameter of
the protocol. It uses a new version of the Schwartz
Zipple lemma over Galois Rings and, thanks to the
fact that only simple tools are needed, it’s easy to
implement. The protocol can also be optimized the
same way the classic is by using the ideas from the
Libra paper [9].

Degree D Sumcheck over Zpk : The fourth section
proposes a different Sumcheck construction for the
case when the summation is done with the product
of D functions instead of just having one. It saves the
prover and verifier from computing the product and
works with each evaluation separately. Moreover, it
also only has an overhead factor of O(D log d) and
the ideas presented in the Libra paper [9] also work
in this case. It’s construction makes use of advanced
mathematical tools such as RMFE making it harder
to implement than the previous protocol.

GKR over Zpk : Finally in sections 5 and 6 two
protocols are presented as constructions for the GKR
protocol over Zpk . The first approach is the trivial
approach and like the first Sumcheck, it’s very easy
to implement as it doesn’t make use of the RMFE tool.
It has an overhead factor in comparison to the classic
GKR of O(n log n). By making use of RMFE and a
more complex protocol, we can bring this overhead
complexity to O(n), and this is what is don in section
6. Once again, the Libra construction can also be
adapted in our case and helps reduce greatly the
overall protocol complexity.

1.2 Related Work

It’s worth noting that while the field of ZKP has
exponentially grown these past few years, very few
research in bringing these new protocols over more
general structures such as rings has been made. To
our knowledge, these are all existing works that con-
struct ZK protocols over rings.

Shuo Chen et al. in [10] extend the GKR and Sum-
check construction to finite commutative rings as
long as the points used to define the polynomial ex-
tension and the random challenges from the verifier
belong to a sampling set as defined in [11]. The
security parameter ends up being inversely propor-
tional to this set’s cardinality, which in the case of
working over the ring Zpk ends up being p− 1 mak-

ing this protocol unusable with small prime values.
Nonetheless, their proposed approach does not have
any overhead in comparison to the classic one, as
they prove that the trivial lifting to rings works fine
as long as p is large enough. We solve this issue
making our protocol security not depend on the ring
being used as long as the ring is of the form Zpk

by relying in the Schwartz Zipple lemma over Ga-
lois Rings instead of the one in Zpk and making it
possible to work over Z2k .

A more recent construction following the previous
paper presented by Eduardo Soria-Vazquez in [12]
generalizes the construction over infinite and non-
commutativer rings. Even though this construction
expands the structures where GKR and Sumcheck
are complete, it still does not provide soundness over
rings of small characteristic, in particular Z2k . It is
worth mentioning that, the same way it is done in 6,
both papers achieve a quasi linear or linear prover
time by using the tools provided in Libra [9].

The same Sumcheck over finite rings is also pro-
vided by Jonathan Bootle, Alessandro Chiesa, and
Katerina Sotiraki in[2] to later be used in Sumcheck
Arguments and solving the R1CS problem over Rings.
We still face the same problems when it commes to
small characteristic Rings.

These next papers don’t work on GKR and Sum-
check but instead propose a general SNARK con-
struction for rings Z2k .

Ganesh et al. [13] proposed Rinocchio, which
adapted the Pinnocchio [14] system (a SNARK de-
signed for field arithmetic) to work with ring arith-
metic. Nonetheless, when used in Z2k Rinnocchio
faces significant efficiency loss, as exceptional sets of
Z2k are very small. While our paper does not tackle
the same problem, its efficiency and security don’t
depend on the chosen prime value.

Similarly, building on the blueprint of VOLE-based
zero-knowledge protocols designed for finite fields
and inspired by the concept behind SPDZ2k [15],
Baum and their team proposed two online construc-
tions in "Appenzeller to Brie" [16]. Subsequently, they
developed a more efficient online protocol using a
PCG construction for VOLE over Z2k in MozZ2k arella
[17]. However, a notable limitation of these construc-
tions is their inherent dependency on the security
parameter.

A more recent construction of a designated-verifier
zero-knowledge proof scheme presented by Lin, Xing
and Yao in [18] removes the undesirable dependence
of communication complexity on the security pa-
rameter, and achieve (strict) linear communication
complexity.

While all these constructions revolve around zero
knowledge primitives, no advancement in the field
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of interactive proofs for secure computation in rings
has been made. As far as we are aware, we propose
the first constructions for such protocols.

2 Preliminaries

2.1 Notations

We use bold letters (e.g. x, y) to denote vectors, and
we use the star operator (⋆) to denote component-
wise product of vectors.

During all the paper p will be a prime number. We
will also refer to the ring Z/pkZ as Zpk for simplicity
purposes.

We will define [n] := {1, · · · , n} and P(S) to be
the power set of S, for any set S. The power set is the
set of all subsets of a set.

2.2 Algebraic Preliminaries

Trying to build cryptographic primitives over rings
is a big challenge since a lot of assumptions and
theorems underlying the security and soundness are
lost when not working in fields. The first problem
we will tackle is the construction of a ring version
Schwartz Zipple lemma.

Lemma 2.1. A polynomial of degree c over Zpk can have
up to rpk−1 roots.

For instance, the polynomial of degree 1 f (x) =
pk−1x has pk−1 roots.

That lemma gives the following upper-bound for
the Schwartz Zipple lemma for any f ∈ Z≤r

pk [X]

Pr[ f (r) = 0| f ̸= 0, r $← Zpk ] ≤

≤ c · pk−1/pk = c/p

which is clearly non-negligible.
To solve this problem we will work on rings with

a better upper-bounds on polynomial roots known
as Galois Rings [19].

Definition 2.2. We denote by GR(pk, d) the Galois
Ring over Zpk of degree d, which is a ring extension
Zpk /( f (X)) = Zpk [ξ], where f (X) ∈ Zpk [X] is a
monic polynomial of degree d over Zpk whose reduction
modulo p is irreducible over Zp and ξ is a root of f in the
Galois Ring.

We can view GR(pk, d) as a Zpk -module [20] with

basis {1, ξ, ξ2, · · · , ξd−1}. Therefore, any value x ∈
GR(pk, d) can be written as

x =
d−1

∑
i=0

aiξ
i ai ∈ Zpk

Within this ring we have a better upper-bound on
number of polynomial roots.

Lemma 2.3. ([LXY23, lemma 1]) A polynomial of degree
c over GR(pk, d) can have up to cp(k−1)d roots.

This will enable us to construct a Schwartz Zipple
lemma over GR(pk, d).

Corollary 2.3.1. For any polynomial f ∈
GR(pk, d)≤c[X] we have

Pr[ f (r) = 0| f ̸= 0, r $← GR(pk, d)] ≤

≤ c · p(k−1)d/pdk = c/pd
(1)

Corollary 2.3.2 (Schwartz Zipple lemma). For any
polynomials f , g ∈ GR(pk, d)≤c[X] we have

Pr[ f (r) = g(r)| f ̸= g, r $← GR(pk, d)] =

= Pr[( f − g)(r)| f − g ̸= 0, r $← GR(pk, d)] ≤ c/pd

We see here that this probability can be made neg-
ligible by increasing the extension degree. That will
give us the soundness of all protocols over Zpk pre-
sented in the following sections.

Since our main goal will be to build protocols over
Zpk we will now need a tool to bring all computa-
tions from Zpk to the Galois Ring. For the Sumcheck
protocol case we will be using what can be called as
the trivial mapping.

Definition 2.4. We will define the trivial bijective map-
ping as

Φ : Zn
pk →GR(pk, n)

x0
x1
...

xn−1

 7→ n−1

∑
i=0

xiξ
i

For any x ∈ Zn
pk , we will define x := Φ(x).

Consider f to be a multivariate polynomial vec-
tor (or vector of multivariate polynomials) with the
polynomials in Z≤c

pk [X1, · · · , Xl ]. That can also be
viewed as a polynomial whose coefficients are in a
vector space and the evaluates in Zpk . Let c be the
maximum degree of the polynomials, then we can
represent f as

f (x1, x2 · · · , xl) = ∑
i1+i2+···+il≤c

ai1,i2,··· ,il x
i1
1 xi2

2 · · · x
il
l

where ai1,i2,··· ,il ∈ Zn
pk and xi ∈ Zpk .

We will define f := Φ( f ) ∈
GR(pk, d)≤c[X1, · · · , Xl ] for any polynomial vector f
as
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Φ( f )(x1, · · · , xl) := ∑
i1+···+il≤c

Φ(ai1,··· ,il )xi1
1 · · · x

il
l

The trivial mapping will be useful when presenting
the basic Sumcheck protocol construction, but once
we try to build the GKR protocol, we will need a
stronger mapping from Zn

pk to GR(pk, d).

We define the ring (Zn
pk ,+, ⋆) where ⋆ is the com-

ponent wise product of vectors.

x1 ⋆ x2 =


x1,1
x1,2

...
x1,n

 ⋆


x2,1
x2,2

...
x2,n

 =


x1,1x2,1
x1,2x2,1

...
x1,nx2,n


Definition 2.5. Let d, n ∈N, a pair of Zpk -module homo-
morphisms ϕ : Zn

pk → GR(pk, d) and ψ : GR(pk, d) →
Zn

pk is a degree-D Reverse Multiplication-Friendly Em-
bedding (RMFE) if for all x1, · · · ,xD ∈ (Zn

pk ,+, ⋆) it

holds that ∏D
i=1 xi = ψ(∏D

i=1 ϕ(xi)).

It’s construction can be found in [21].
Some important direct consequences of this defini-

tion are presented in the following lemma.

Lemma 2.6. ϕ is injective and ψ is surjective.

Proof. To see that ϕ is injective it suffices to show that
ϕ(a) = 0 implies that a = 0. Indeed, if ϕ(a) = 0
then 0 = ψ(0) = ψ(ϕ(a) ⋆ϕ(1) ⋆ · · · ⋆ϕ(1)) = a ⋆1 ⋆
· · · ⋆ 1 = a. Similarly, given a ∈ Zn

pk , the preimage of

a is given by ϕ(a) · ϕ(1) · · · ϕ(1), which shows that
ψ is surjective.

Lemma 2.7. In a RMFE pair (ϕ, ψ), both functions are
linear.

Proof. Due to the fact that ϕ is a group homomor-
phism, we have ϕ(ha) = ϕ(∑h

i=1 a) = ∑h
i=0 ϕ(a) =

hϕ(a). The same argument can be applied to ψ as
well.

Lemma 2.8. ([ELXY23, lemma 2]) Let (ϕ, ψ) be a degree-
D RMFE pair. Then there exists a degree-D RMFE pair
(ϕ′, ψ′) with ϕ′(1) = 1.

Throughout the paper we will use such RMFE.
We will also define f̂ = ϕ( f ) ∈

GR≤c(pk, d)[X1, · · · , Xl ] for any polynomial vector f
the same way we did f with Φ:

ϕ( f )(x1, · · · , xl) := ∑
i1+···+il≤c

ϕ(ai1,··· ,il )xi1
1 · · · x

il
l

2.3 Sumcheck protocol

The Sumcheck problem is a fundamental problem
that has various applications. The problem is to
sum a polynomial f ∈ F[X1, · · · , Xl ] over the binary
hypercube.

H := ∑
b1∈{0,1}

∑
b2∈{0,1}

· · · ∑
bl∈{0,1}

f (b1, b2, · · · , bl) (2)

Calculating this sum directly has an exponential
complexity with the dimension l, given that there are
2l possible combinations for b1, b2, ..., bl .

To address this issue, Lund et al. introduced the
Sumcheck protocol, described in Protocol 1, which
enables a verifier V to delegate the computation to
a computationally unbounded prover P. The prover
can then convince the verifier V that the result H is
the correct sum. The proof size for the Sumcheck
protocol is O(cl), where c represents the variable
degree of f . In each round, P transmits a univariate
polynomial of a single variable from f , and this can
be uniquely determined by c+ 1 points. The verifier’s
time complexity in this protocol is O(cl).

The prover’s time complexity is O(l2lT), where
O(T) is the complexity to evaluate f at a random
point. It’s important to note that the Sumcheck pro-
tocol is both complete and sound, with a soundness
error of cl

|F| .
We will define the polynomial vector version of the

equality as


H1
H2
...

Hn

 = ∑
blog n+1,··· ,bl∈{0,1}

f̃ (blog n+1, · · · , bl) =

= ∑
blog n+1,··· ,bl∈{0,1}


f (0, · · · , 0, 0, blog n+1, · · · , bl)

f (0, · · · , 0, 1, blog n+1, · · · , bl)
...

f (1, · · · , 1, 1, blog n+1, · · · , bl)


(3)

where f̃ is a polynomial vector. If the prover is able
to prove the previous equality, then the verifier will
get H = ∑n

i=1 Hi. We will refer to this transformation
the batching of the sumcheck, and the first log n
variables of f will be the batching parameters.

2.4 GKR protocol

The GKR protocol is an interactive proof protocol for
layered arithmetic circuits proposed by Goldwasser
et al. that uses the Sumcheck protocol as a building
block.
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Protocol 1 (Sumcheck). The protocol proceeds in l rounds

• In the first round, P sends a univariate polynomial

f1(x1) := ∑
b2∈{0,1}

· · · ∑
bl∈{0,1}

f (x1, b2, · · · , bl)

V checks that H = f1(0) + f1(1) and sends a random challenge r1 ∈ F to P.
• In the i-th round, P sends a univariate polynomial

fi(xi) := ∑
bi+1∈{0,1}

· · · ∑
bl∈{0,1}

f (r1, r2, · · · , ri−1, xi, bi+1, · · · , bl)

V checks that fi−1(ri−1) = fi(0) + fi(1) and sends a random challenge ri ∈ F to P.
• In the l-th round P will send a univariate polynomial

fl(xl) := f (r1, · · · , rl−1, xl)

V will check that fl−1(rl−1) = fl(0) + fl(1) and generates a random challenge rl ∈ F. Given oracle access to
an evaluation f (r1, r2, · · · , rl), V will verify that fl(rl) = f (r1, r2, · · · , rl) and accept if the equality holds.
The instantiation of the oracle depends on the application of the Sumcheck protocol

Protocol 2 (GKR protocol). Let F be a prime field. Let C : FSi → FSo be a m-depth layered arithmetic circuit.
Without loss of generality assume Si and So are both powers of 2 and we can pad them if not. The protocol proceeds
as follows.

• Define the multilinear extension of the output array as W̌o. V chooses a random challenge ro ∈ Fso and sends it
to P. Both P and V compute W̌o(ro).

• In the first round P and V run a sumcheck protocol on

W̌o(ro) := ∑
b,c∈{0,1}so

ˇaddo(ro, b, c)(W̌1(b) + W̌1(c)) + ˇmulto(ro, b, c)(W̌1(b) · W̌1(c))

At the end of the protocol V has to evaluate the whole polynomial. To do so, V receives a univariate polynomial
q(x) claimed to be equal to W1(l1(x)), where l(x) is a linear function with l(0) = rb and l1(1) = rc. The
verifier will now compute W1(rb) = q1(0), W1(rc) = q1(1), ˇaddi(ro, rb, rc) and ˇmulti(r0, rb, rc) and then
checks the last sumcheck protocol equality. V will now choose a new challenge r′1 and send it to the prover. We
will consider r1 = l1(r′1).

• On the i’th round P and V will run a sumcheck on

W̌i(ri) := ∑
b,c∈{0,1}si

ˇaddi(ri, b, c)(W̌i+1(b) + W̌i+1(c)) + ˇmulti(ri, b, c)(W̌i+1(b) · W̌i+1(c))

and run the last step as it was done in the first iteration, resulting in a new claimed equality W̌i+1(l(x)) =
qi+1(x).

• During the last iteration m the verifier will construct W̌m the multilinear extension of the input array and check
that Wm(lm(x)) = qm(x) and accept if this is true, reject otherwise.

The high level idea is that given a layered arith-
metic circuit C over a finite field F, the prover will re-
duce the claimed output of the i’th layer to a claimed
output on the previous layer of C. At the end of the
protocol the verifier will have a claim about the input

of the protocol that can be checked easily.

To do this we will to write the output of the i’th
layer as the sum of the output of the i + 1’th layer.
This will be done using a tool called multilinear ex-
tension.
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Definition 2.9. Let V : {0, d}s → F be a function.
The multilinear extension of V is the unique multilinear
polynomial V̌ : Fs → F such that V̌(x1, · · · , xs) =
V(x1, · · · , xs) ∀x1, · · · , xs ∈ {0, 1}s

V̌ can be expressed using the Lagrange polynomial basis
as

V̌(x) = ∑
b∈{0,1}s

s

∏
i=1

((1− xi)(1− bi) + xibi) ·V(b)

Before describing the GKR protocol, we introduce
some additional notations. We denote the number
of gates in the i’th layer as Si and let si = ⌈log Si⌉
(we will assume Si to be a power of 2 for simplicity
purposes). Consider now Wi : {0, 1}si → F to be the
function that takes as input the label of a gate in the
i’th layer in it’s binary form and outputs the output
of that gate. We also define two additional functions
addi, multi : {0, 1}si−1+2si → {0, 1} referred as wiring
predicates in the literature. addi (multi) takes one gate
label z ∈ {0, 1}si−1 in layer i− 1 and outputs 1 if and
only if gate z is an addition (multiplication) gate that
takes the output of gate x, y as input, where x and y
are the other two input parameters to the function.

With these new definitions, we have the following
layer equality:

Wi(z) = ∑
b,c∈{0,1}si

addi(z, b, c)(Wi+1(b) + Wi+1(c))+

multi(z, b, c)(Wi+1(b) ·Wi+1(c)) ∀z ∈ {0, 1}si

We can rewrite the equation in its multilinear ex-
tension version

W̌i(z) := ∑
b,c∈{0,1}si

ˇaddi(z, b, c)(W̌i+1(b) + W̌i+1(c))+

ˇmulti(z, b, c)(W̌i+1(b) · W̌i+1(c))

where z ∈ Fsi .
The whole protocol description can be found in

Protocol 2. The main idea is to use sumcheck protocol
to prove the above equality in the first layer at a
random point r0. That is to prove

W̌0(r0) := ∑
b,c∈{0,1}s0

ˇadd0(r0, b, c)(W̌1(b) + W̌1(c))+

ˇmult0(r0, b, c)(W̌1(b) · W̌1(c))

At the last step of the sumcheck the verifier would
have to evaluate the polynomial the polynomial at
the random point rb, rc, which implies he would have
to compute W̌1(rb) and W̌1(rc). This is not possible
as V doesn’t have access to the computation trace of
C.

To solve this, the prover will provide a univariate
polynomial q1(x) claimed to be equal to W1(l1(x))
where l1 is the linear polynomial such that l1(0) = rb
and l1(1) = rc. The verifier will be able to com-
pute W̌1(rb) = q1(0) and W̌1(rc) = q1(1) as long as
q1(x) = W̌1(l1(x)). The verifier will check the last
step of the sumcheck and if the equality holds, will
proceed to prove that the polynomial equality holds
using Schwartz Zipple lemma. V will pick a random
challenge r′1 and define r1 = l(r′1) and the prover will
have to prove that q1(r′1) = W̌1(r1).

This will be done recursively the same way we
reduced the claim on the output to a claim on the
last layer. Once the protocol reaches the input layer,
the verifier will be able to compute W̌m and check
that W̌m ◦ lm = qm.

3 Sumcheck over Zpk

Throughout this section we will build a protocol that
will enable P to prove to V the correctness of the
following sum

H = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

f (b1, · · · , bl) (4)

for any f ∈ Z≤c
pk [X1, · · · , Xl ] known to both P and

V.
Naively computing the right hand equation would

take the verifier an exponential amount of evaluations
of f , whereas this protocol will enable V to delegate
the computation to a computationally unbounded
prover P.

Since the upper-bound for the Schwartz Zipple
lemma is non-negligible in Zpk , the classic Sumcheck
protocol won’t work. To solve this issue we will be
bringing the computation over to the Galois Ring,
and that will add a logarithmic overhead factor on
the prover side in comparison to the classic version.

3.1 Protocol construction

We will split the protocol in two main steps, the first
one being the Setup phase and the second the interac-
tive phase. The setup phase will bring the sumcheck
equation from Zpk to GR(pk, n), and the interactive
phase will run the classic sumcheck protocol over
this new ring.

The soundness of the protocol will come from the
new version of Schwartz Zipple lemma presented in
Corollary 2.3.2 and the completeness will come by
construction.

Step 1 - Setup phase During this phase we will
bring the summation from Zpk to GR(pk, n). This
could be done trivially by inclusion since Zpk ⊆
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Protocol 3 (Sumcheck over Zpk ). The protocol proceeds in 2 main steps

Step 1 - Setup phase

• P will batch the first log d summations together reducing the statement to proving
H1
H2
...

Hn

 = ∑
blog n+1∈{0,1}

· · · ∑
bl∈{0,1}


f (0, · · · , 0, 0, blog n+1, · · · , bl)

f (0, · · · , 0, 1, blog n+1, · · · , bl)
...

f (1, · · · , 1, 1, blog n+1, · · · , bl)

 = ∑
blog n+1,··· ,bl∈{0,1}

f̃ (blog n+1, · · · , bl)

with f̃ : Z
l−log n
pk → Zn

pk a polynomial vector. It can be easily seen that H = ∑n
i=1 Hi.

• Both V and P will compute f = Φ( f̃ ) ∈ GR(pk, n)[Xlog n−1, · · · , Xl ] for Φ : Zn
pk → GR(pk, n).

Step 2 - Interactive phase

• Consider l′ = l − log n. In the first round, P sends a univariate polynomial

g1(x1) := ∑
b2∈{0,1}

· · · ∑
bl′∈{0,1}

f (x1, b2, · · · , bl′)

V checks that H = g1(0) + g1(1) and sends a random challenge r1 ∈ GR(pk, n) to P.
• In the i-th round, P sends a univariate polynomial

gi(xi) := ∑
bi+1∈{0,1}

· · · ∑
bl′∈{0,1}

f (r1, r2, · · · , ri−1, xi, bi+1, · · · , bl′)

V checks that gi−1(ri−1) = gi(0) + gi(1) and sends a random challenge ri ∈ GR(pk, n) to P.
• In the l′-th round P will send a univariate polynomial

gl′(xl′) := f (r1, · · · , rl′−1, xl′)

V will check that gl′−1(rl′−1) = gl(0) + gl′(1) and generates a random challenge rl′ ∈ F. V will now evaluate
f (r1, r2, · · · , rl′) and will verify that gl′(rl′) = f (r1, r2, · · · , rl′) and accept if the equality holds or reject
otherwise.

GR(pk, n), nonetheless this would bring a big over-
head to the overall computation. To solve this prob-
lem we will batch the first log n summations together
doing n Sumchecks in parallel the same way it was
presented in the preliminaries.

Let’s say we have

H = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

f (b1, · · · , bl)

Then, proving the previous equality is the same as
proving the following two equalities


H1
H2
...

Hn

 = ∑
blog n+1,··· ,bl∈{0,1}


f (0, · · · , 0, 0, blog n+1, · · · , bl)

f (0, · · · , 0, 1, blog n+1, · · · , bl)
...

f (1, · · · , 1, 1, blog n+1, · · · , bl)


(5)

H =
n

∑
i=1

Hi

We can now write 5 as a summation of evaluations
of a polynomial vector

H = ∑
blog n+1,··· ,bl∈{0,1}

f̃ (blog n+1, · · · , bl)

Which we can now turn into a summation in the
Galois Ring using Φ. We will end up with the follow-
ing equality to prove

H = Φ(H) = ∑
blog n+1,··· ,bl∈{0,1}

Φ( f̃ (blog n+1, · · · , bl))

= ∑
blog n+1,··· ,bl∈{0,1}

f (blog n+1, · · · , bl)

(6)
with H ∈ GR(pk, n) and f ∈

GR(pk, n)[Xlog n+1, · · · , Xl ]. Since Φ is a linear

7
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bijective mapping, proving that 5 holds is equivalent
that proving that 6 holds.

The computation of f from f will be done by both
P and V and it’s necessary to ensure soundness of
the protocol. If P where to compute f and send it to
V, then P would be able to generate a new function
g ̸= f whose summation is a different value H′ and
send g instead of f and the verifier would still accept
the second part of the protocol as long as this new
function g adds to this new value H′ ̸= H.

Step 2 - Interactive phase The prover P now wants
to prove the following equality correctness to the
verifier

H = ∑
blog n+1,··· ,bl∈{0,1}

f (blog n+1, · · · , bl)

with H ∈ GR(pk, n) and f ∈
GR(pk, n)[Xlog n+1, · · · , Xl ].

For simplicity purposes we will consider l′ = l −
log n and work with the following equation:

H = ∑
b1,··· ,bl′∈{0,1}

f (b1, · · · , bl′)

This equation looks like the Sumcheck equation,
but now on GR(pk, n). If we apply the classic Sum-
check protocol over this new ring, we will get a
soundness error of δs ≤ l/pd. This will prove to
V the correctness of the sum and therefore the cor-
rectness of 4

The complete protocol can be found in Protocol 3.
We will now see the completeness and soundness

analysis, as well as the complexity analysis of this pro-
tocol and compute the overhead of this new version
in comparison to the classic Sumcheck over fields.

3.2 Completeness and soundness analysis

Lemma 3.1. Given f ∈ Zpk [X1, · · · , Xl ], then the fol-
lowing two are equivalent:

1. H = ∑b1∈{0,1} · · ·∑bl∈{0,1} f (b1, · · · , bl)

2. H = ∑b1∈{0,1} · · ·∑bl′∈{0,1} f (b1, · · · , bl′)

Proof. Consider the batched form to be

H = ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

f̃ (b1, · · · , bl)

This previous form is equivalent to the original

one. Since Φ is a linear mapping, we have

Φ(H) = H = ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

f (b1, · · · , bl′)

= ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

∑
S∈P([l′ ])

Φ( f̃S)∏
i∈S

bi

= Φ( ∑
b1∈{0,1}

· · · ∑
bn∈{0,1}

∑
S∈P([l])

f̃S ∏
i∈S

bi)

= Φ( ∑
b1∈{0,1}

· · · ∑
bn∈{0,1}

f̃ (b1, · · · , bl))

Since Φ is a bijective mapping, we have that this
equality holds if and only if

H = ∑
b1∈{0,1}

· · · ∑
bn∈{0,1}

f̃ (b1, · · · , bl)

This lemma ensures that as long as P can prove the
correctness of sum 2. in the previous lemma, then V
can trust that the first sum is H.

During the protocol, the Setup phase was the con-
version from the first sum to the second. The second
phase nonetheless looks exactly like the original sum-
check protocol, but working on GR(pk, n) instead of
F. This next lemma will give us the soundness and
correctness of the Interactive phase.

Lemma 3.2. Let f be a n-variate polynomial defined over
the ring GR(pk, n). For any H ∈ GR(pk, n), let L be the
language of polynomials f such that

H = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

f (b1, · · · , bl)

The Sumcheck protocol used in the Interactive phase of
Protocol 2 is an IOP system for L with completeness error
δc = 0 and soundness error δs ≤ l/pn.

Proof. Completeness holds by construction. We will
prove soundness by induction on l.

In the case l = 1, P sends h1(x1) which should
be equal to f 1(x1). In order to check that, we
evaluate both polynomials in a random point, and
thanks to Corollary 2.3.2 (Schwartz Zipple lemma
over GR(pk, n)) we have that if h1(x1) ̸= f (x1) then
with probability 1 − 1

pn , V will reject, giving us a
soundness error of 1/pn.

We will now assume the induction hypothe-
sis that for (l − 1)-variate polynomials the sound-
ness error is (l − 1)/pn. Consider now h1(x1) =

∑b2∈0,1 · · ·∑bl∈0,1 f (x1, b2, · · · , bl). Suppose now that
P sends f1(x1) ̸= h1(x1). Then because they are
distinct polynomials h1(r1) ̸= f1(r1) with probabil-
ity at least 1− p−n. Conditioned to this event hap-
pening, P now has to prove the equality f1(r1) =

∑b2∈0,1 · · ·∑bl∈0,1 f (r1, b2, · · · , bl), which by the in-
duction hypothesis we know that V will reject at

8
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some subsequent round with probability at least
1− (n − 1)/pn. Therefore V will reject with prob-
ability at least

1− Pr[h1(r1) = f1(r1)]− (1−
Pr[V rejects in some round j > 1|h1(r1) ̸= f1(r1)]) ≥

≥ 1− 1/pn − (l − 1)/pn = 1− l/pn

And therefore we end up with a soundness error of
l/pd.

Theorem 3.3. Protocol 3 is complete and has a soundness
error δs ≤ l/pd.

Proof. Given the fact that V has access to the poly-
nomial f and can compute the transformation f , all
the soundness error will come from the interactive
step of the protocol. As seen in Lemma 3.2, this
soundness error, and therefore the whole protocols
soundness error, is δs ≤ l/pd.

The completeness of the protocol is directly given
by construction.

3.3 Complexity analysis

The protocol complexity can be computed by adding
the complexity of both phases.

During the first phase, both P and V have to con-
struct a polynomial in GR(pk, n); That means they
have to first construct f̃ and then from there find f .
This can be done in O(nT1), where O(T1) is the time
to evaluate the polynomial f at one point.

During the second phase, the prover will evaluate
f O(l′2l′) times. If we consider O(T2) to be the time
it takes to evaluate f in a random point of GR(pk, n)
and taking into account that l′ = l − log n, then the
prover complexity will be

O(l′2l′T2) = O((l − log n)2l−log nT2) = O(
l2l

n
T2)

Evaluation of f in a point of the Galois Ring will
have the same amount of multiplications (products
in the Galois Ring) as evaluations of f in the ring
Zpk . Using Fast Fourier Transform and having the
irreducible polynomial we used for the quotient to
generate the Galois Ring be a sparse polynomial,
we can compute a multiplication of two elements in
GR(pk, n) in time O(n log n). That means that we
have O(T2) = O(T1n log n)

With that we finally have a prover complexity of

O(
l2l

n
T2) = O(

l2l

n
T1n log n) = O(l2lT1 log n)

We can see that in comparison to the classic sum-
check over finite fields which has a prover time of
O(l2lT1), we only have a log n overhead factor. In

our protocol n is also the bits of security and can be
set to 128 or 256, meaning it’s not a big value.

When it comes to verifier complexity, during the
second phase V has to evaluate l′ univariate poly-
nomials in GR(pk, n)≤c[X] on a random point, and
during the last step of the protocol V evaluates f
in a random point. This first l′ evaluations can be
computed in O(l′cn log n). The final evaluation will
take O(T2) = O(n log nT1). We will end up with a
verifier complexity of

O(n log n(l′c + T1))

The overall communication of the protocol is l′

univariate polynomials of maximum degree c over
GR(pk, n), which is the same as O(l′cn) elements.

We can see all costs summarized in the following
table

Proof size V time P time
O(l′cn) O(n log n(l′c + T1)) O(l2lT1 log n)

Table 1: Complexity analysis Protocol 3

3.4 Quasilinear Prover time multilinear
function Sumcheck

The Libra paper proposed an optimization to the
Sumcheck protocol for the mulitlinear case that uses
the fact that each iteration the amount of monomials
is reduced by half as we are evaluating one of the
variables.

In the general multilinear case, evaluating
f ∈ GR(pk, n)[X1, · · · , Xl′ ] would take O(T1) =

O(2l′ l′ log l′) = O(2l log n) giving a total complex-
ity on the sumcheck protocol of O(l22l log n).

The optimization proposed in Libra can also be
done in our case reducing the prover complexity to
O(2l log2 n), that is removing a O(l2l) factor from
the trivial approach.

This optimization consists on the precomputation
of f in all points of the form (r1, · · · , ri−1, b) ∀i ∈
[l], b ∈ {0, 1}l−i+1 and rj the random challenges in
the protocol. If this evaluations can be precom-
puted in time O(2l′n log(n)) = O(2l log(n)) then
during the protocol we can use them to add the ele-
ments without having to compute them. We will add
O(2l′ + 2l′−1 + · · ·+ 1) = O(2l′+1) = O(2l′) elements
in GR(pk, n) which can be done in O(2l′n) = O(2l)
and therefore the whole algorithm complexity will
be O(2l log n).

The precomputing algorithm can be seen in Algo-
rithm 1 and taking into account that the elements in
A are elements in GR(pk, n) we end up having an
overall complexity of O(2l′+1n log n) = O(2l log n).
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Algorithm 1 F ← FunctionEvaluations( f ,A, r1, · · · , rl′)

Input: Multilinear f ∈ GR(pk, d)[X1, · · · , Xl′ ], initial bookkeeping table A, random r1, · · · , rl′ in GR(pk, d)
Output: All function evaluations f (r1, · · · , ri−1, bi, · · · , bl′)

1: for i = 1, · · · , l do
2: for b ∈ {0, 1}l′−i do
3: for t = 0, 1 do
4: Let f (r1, · · · , ri−1, t, b) = A[b] · (1− t) +A[b + 2l−i] · t
5: A[b] = A[b] · (1− ri) +A[b + 2l′−i] · ri

6: Let F contain all function evaluations f (.) computed at Step 4
7: return F

4 Degree D Sumcheck over Zpk

The previously presented protocol is of great use
when working with a multivariate polynomial in
it’s expanded form, the problem comes when this
polynomial is presented as the product of smaller
polynomials. Having to compute the resulting poly-
nomial may end up being very expensive, and it also
breaks the nice product structure, so a modification
of the previous protocol has to be used to tackle this
issue.

We want to build a protocol that enables a prover
P prove to a verifier V that the following equality
holds

H = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

D

∏
i=1

fi(b1, · · · , bl)

where fi ∈ Z≤c
pk [X1, · · · , Xl ] and i ∈ [D].

The trivial approach to compute the image Φ of
each polynomial (after doing the batching trick) in
the product and solve it the same way as before is not
correct, as Φ is not a ring isomorphism and therefore

Φ(H) ̸= ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

Φ( f̃i(b1, · · · , bl′))

Since finding nice (injective) homomorphisms is
hard and they may not exist between Zpk and

GR(pk, d), we will use a tool called degree-D Re-
verse Multiplicative Friendly Embedding (RMFE).
This tool consists a group homomorphism pair (ϕ, ψ)
where ϕ : Zn

pk → GR(pk, d), ψ : GR(pk, d) → Zn
pk

and ∏D
i=1 xi = ψ(∏D

i=1 ϕ(xi)) with x1, · · · , xD ∈ Zn
pk .

It’s important to see that since this is not a ring
homomorphism and therefore the composition of
ϕ with ψ will not be the identity in Zpk , that is
ψ(ϕ(x)) ̸= x. Nonetheless, since we specified in
the preliminaries that we would be using ϕ such that
ϕ(1) = 1, then

ψ(ϕ(x)) = ψ(ϕ(x) · ϕ(1) · · · ϕ(1)) = x · 1 · · · 1 = x

With this tool and using it’s linearity property we
will have the following equality

H = ψ( ∑
b1,··· ,bl∈{0,1}

D

∏
i=1

ϕ( f̃i(b1, · · · , bl)))

With that in mind we can dive into the protocol
construction.

4.1 Protocol construction

We can split the protocol into 3 steps, the precom-
putating phase, the setup phase and the interactive
phase. The last phase will be identical to the one in
Protocol 3, nonetheless the other ones will vary.

Step 1 - Precomputing phase Given a polynomial
vector f̃ , when computing ϕ( f̃ ) = f̂ we may need to
compute many instances of the function ϕ (one for
each coefficient). To speed up this process we can
use the fact that ϕ is a linear function, and therefore
if we find the image of the canonical basis, we can
compute the image of any vector in Zpk by linearity.

Therefore the precomputing phase will consider
Zn

pk to be a Zpk -module and compute the image of
it’s canonical basis to be later used when computing
multiple images of ϕ.

This precomputing phase only depends on the cho-
sen RMFE, and therefore can be reused in multiple
separate instances of Sumcheck. That is why it is also
interesting to point out that ψ is linear, and therefore
we can use the same idea as before and compute the
image of the canonical basis.

Step 2 - Setup phase The setup phase will start
the same way it did in the previous section, by batch-
ing the first log n summations together and have the
sumcheck turn into a polynomial vector equality

H = ∑
blog n+1,··· ,bl∈{0,1}

D

∏
i=1

f̃i(blog n+1, · · · , bl)
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Protocol 4 (Degree D Sumcheck over Zpk ). The protocol proceeds in 3 main steps

Step 1 - Precomputing phase

• Compute the image ϕ of the canonical basis of the Zpk -module Zn
pk .

• Compute the image ψ of the canonical basis of the Zpk -module GR(pk, d).

Step 2 - Setup phase

• P will batch the first log d summations together reducing the statement to proving
H1
H2
...

Hn

 = ∑
blog n+1,··· ,bl∈{0,1}

D

∏
i=1


fi(0, · · · , 0, 0, blog n+1, · · · , bl)

fi(0, · · · , 0, 1, blog n+1, · · · , bl)
...

fi(1, · · · , 1, 1, blog n+1, · · · , bl)

 = ∑
blog n+1,··· ,bl∈{0,1}

D

∏
i=1

f̃i(blog n+1, · · · , bl)

with f̃i : Z
l−log n
pk → Zn

pk . It can be easily seen that H = ∑n
i=1 Hi.

• Both V and P will compute f̂ = ϕ( f̃i) for ϕ : Zn
pk → GR(pk, d). We will therefore have several polynomials

f̂i ∈ GR(pk, n)[Xlog n−1, · · · , Xl ].
• P will send a value Ĥ claimed to be

Ĥ = ∑
blog n+1,··· ,bl∈{0,1}

D

∏
i=1

f̂i(blog n+1, · · · , bl)

and V will check that ψ(Ĥ) = H and reject if it’s not true.

Step 3 - Interactive phase

• Consider l′ = l − log n. In the first round, P sends a univariate polynomial

ĝ1(x1) := ∑
b2∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̂i(x1, b2, · · · , bl′)

V checks that Ĥ = ĝ1(0) + ĝ1(1) and sends a random challenge r1 ∈ GR(pk, n) to P.
• In the i-th round, P sends a univariate polynomial

ĝi(xi) := ∑
bi+1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̂i(r1, r2, · · · , ri−1, xi, bi+1, · · · , bl′)

V checks that ĝi−1(ri−1) = ĝi(0) + ĝi(1) and sends a random challenge ri ∈ GR(pk, n) to P.
• In the l′-th round P will send a univariate polynomial

ĝl′(xl′) :=
D

∏
i=1

f̂i(r1, · · · , rl′−1, xl′)

V will check that ĝl′−1(rl′−1) = gl(0) + gl′(1) and generates a random challenge rl′ ∈ F. V will now evaluate
f̂i(r1, r2, · · · , rl′) for i ∈ [D] and will verify that ĝl′(rl′) = ∏D

i=1 f̂i(r1, r2, · · · , rl′) and accept if the equality
holds or reject otherwise.

where the product between vectors is the ⋆ prod-
uct.

Both the prover and the verifier will now compute

f̂i = ϕ( f̃i) ∈ GR(pk, d)[X1, · · · , Xn] using the pre-
computed images of the canonical basis to speed up
the computation.
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The prover will now send a value Ĥ claimed to be
equal to ∑b1∈{0,1} · · ·∑bl∈{0,1}∏D

i=1 ϕ( f̃i(b1, · · · , bl)).
The verifier will check that

H = ψ(Ĥ)

And reject if it’s not true.
The only thing left for the prover to do is to prove

that

Ĥ = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

D

∏
i=1

f̂i(b1, · · · , bl)

which will be done in the interactive phase.

Step 3 - Interactive phase This last step will the
the same as the interactive phase in Protocol 3, as we
are just proving a sumcheck equality in the Galois
Ring.

The whole protocol is shown in Protocol 4.

4.2 Completeness and soundness analysis

Lemma 4.1. Given D polynomials fi ∈
Zpk [X1, · · · , Xl ] for i ∈ [D], if Ĥ =

∑b1∈{0,1} · · ·∑bl′∈{0,1}∏D
i=1 f̂i(b1, · · · , bl′)

and ψ(Ĥ) = H , then H =

∑b1∈{0,1} · · ·∑bl∈{0,1}∏D
i=1 fi(b1, · · · , bl).

Proof. Since ψ is a linear mapping and using the
RMFE definition, we have

H = ψ(Ĥ) = ψ( ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̂i(b1, · · · , bl′))

= ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

ψ(
D

∏
i=1

ϕ( f̃i(b1, · · · , bl′)))

= ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̃i(b1, · · · , bl′)

And we know by construction that if

H = ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̃i(b1, · · · , bl′)

then we have

H = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

D

∏
i=1

fi(b1, · · · , bl)

The previous lemma ensures us that if P is able
to prove the correctness of the sum in the Galois
Ring, then the original sum is correct. This will bring
the soundness of the first part of the protocol, the

correctness is given by the other implication, which
is trivial as Ĥ is defined as

Ĥ := ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̂i(b1, · · · , bl′)

and will always be true no matter what H is.
The completeness and soundness of the interac-

tive phase is given by Lemma 3.2 from the previous
section.

Theorem 4.2. Protocol 4 is complete and has a soundness
error δs ≤ l′/pd.

Proof. V has access to the polynomial f as well as the
precomputed images ϕ and ψ of the canonical basis
and can compute the transformation f̂ efficiently.
Lemma 3.2 will ensure that

Ĥ = ∑
b1∈{0,1}

· · · ∑
bl′∈{0,1}

D

∏
i=1

f̂i(b1, · · · , bl′)

with a soundness error of δs ≤ l/pd. Since V can
verify that ψ(Ĥ) = H , Lemma 4.1 proves that with
no extra soundness error we have

H = ∑
b1∈{0,1}

· · · ∑
bl∈{0,1}

D

∏
i=1

fi(b1, · · · , bl)

Therefore the whole protocol’s soundness error
will be δs ≤ l/pd.

The completeness of the protocol is again given by
construction.

4.3 Complexity analysis

As expected, working with a more complex map
from Zn

pk to GR(pk, d) such as RMFE, will increase
the complexity of the whole protocol.

The main overhead with respect to the previously
presented Sumcheck over Zpk will come from the fact
that the cardinality of the new ring will have to be
bigger than the one in the original ring. The specific
size will be given by Lemma 4.3 first presented in
Corollary 5 [https://eprint.iacr.org/2023/173.pdf].

Lemma 4.3. Let F/Fq be a function field of genus g with
n distinct rational places and a place of degree k. Then
there exists an (n, k; D)-RMFE over Fq as follows.

1. if q is a square, there is a constructive family of
(n, k; D)-RMFE over Fq with n → ∞ and k

n →
D + 2D√

q−1 .

2. if q = p2m+1 for a prime p, there is a constructive
family of (n, k; D)-RMFE over Fq with n→ ∞ and
k
n → D + D(p+1+ϵ)

pm+1−1 , where ϵ = p−1
pm−1 .
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We also have another lemma from Lemma 5
[https://eprint.iacr.org/2023/173.pdf] that brings
this RMFE from fields to rings.

Lemma 4.4. Let q = pr for a prime p. Then
the (n, k; D)-RMFE over Fq constructed in Lemma 5
[https://eprint.iacr.org/2023/173.pdf] can be lifted to an
(n, k; D)-RMFE over GR(pl , r) for any l ≥ 1.

With that in mind, we have the following Corollary

Corollary 4.4.1. There exists a constructive family of
(n, k; D)-RMFE over Zpl for all l = p2m ≥ 1 with n→
∞ and k

n → D + 2D
pm−1 .

With this lemma we can now see that the Ga-
lois Ring will be O(D + 2D

pm−1 ) times bigger than
the original field. We will therefore have O(d) =
O(n(D + 2D

pm−1 )). For our purposes m will be large
enough to be able to consider the second term negli-
gible, therefore we have O(d) = O(nD).

We can now analyze the complexity of each phase
the same way we did with the previous protocol.

During the setup phase, both P and V build the
polynomial in the Galois Ring using the precomputed
images of the canonical basis. They will first have
to construct f̃i for i ∈ [D] and this can be done in
O(n ∑D

i=0 Ti) where O(Ti) is the time to evaluate fi
at one point. We will define T = ∑D

i=1 Ti. Then they
will have to find f̂i for i ∈ [D] which takes O(n2T)
assuming that O(Ti) is also the number of coefficients
fi has. P will then have to compute the new sum
which can be done in time O(2l′(T′ + d log d)) =

O(
2l(T′+d log d)

n ) where T′ = ∑D
i=1 T′i with O(T′i ) the

time to evaluate f̂ in a point of the GR(pk, d). That
means the second phase has a verifier complexity of

O(n2T′) and a prover complexity of O(
2l(T′+d log d)

n +
n2T).

Any operation in GR(pk, d) using FFT takes
O(d log d) operations in Zpk . Since f̂i and fi main-
tain the same structure, we can assume that O(T′i ) =
O(Tid log d) and the previous prover complexity will

end up being O(
2l Td log d

n + n2T). Now using that
O(d) = O(n(D + 2D

pm−1 )) and that n2T is much

smaller than 2l Td log d
n we end up with a prover com-

plexity for the second phase of

O(2lTD log d)

The last phase will have the same complexity as
the previous algorithm, but with the new d. That
means that the interactive phase will have a prover
complexity of

O(l′2l′T′) = O(
l2lTd log d

n
) = O(l2lTD log d)

That means the overall prover complexity will end
up being O(l2lTD log d). Taking into account that
the classical sumcheck has a prover complexity of
O(lslT), we can see that this new version adds an
overhead of O(D log d) to the overall cost.

The verifier during the second phase will have to
do l′ evaluations of these given polynomials, involv-
ing multiplications in GR(pk, d). This will give us
a verifier time of O(l′cd log d), where c is the max
degree on the individual variables of the multivariate
polynomial. Finally, the end step will be to evaluate
the whole polynomial in a single point and evaluat-
ing it at one random point takes O(d log(d)T) time.

The total communication of the protocol will be
then O(l′cd), the l′ univariate polynomials of c terms
in GR(pk, d) each.

We can see all costs summarized in the following
table

Proof size V time P time
O(l′cd) O(d log d(l′c + T)) O(l2lTD log d)

Table 2: Complexity analysis Protocol 4

4.4 Quasilinear Prover time Sumcheck for
products of multilinear functions

The same way we did on the previous section, if we
consider the case where all functions are multilinear
then we have O(Ti) = O(2l′d log d) = O(2l D log d)
making the overall prover complexity of the protocol
O(l22l D2 log2 d) when we run the protocol in the
naive way.

The algorithm used to reduce the prover complex-
ity on the previous section won’t work now since the
product of multilinear polynomials is not multilinear.
Nonetheless we can use the same idea to build a new
protocol also proposed in the Libra paper with prover
complexity of O(2l D2 log d) removing a O(l2l D) fac-
tor from the cost and making it quasilinear.

The way this is done is by precomputing in
O(D2l′d log d) = O(2l D2 log d) time the images of
each function in the product using Algorithm 1 but
now working in a bigger ring. Once we have them we
can run the sumcheck protocol using those preimages
in time O(2l′d log d) = O(2l D log d).

The overall prover complexity ends up being

O(2l D2 log d)

5 GKR over Zpk

We now have seen two tools to send packed values
from the ring Zpk to GR(pk, d), the trivial bijective

13
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Protocol 5 (GKR protocol over Zpk ). Let C : Z
Si
pk → Z

So
pk be a m-depth layered arithmetic circuit. Without loss of

generality assume Si and So are both powers of 2 and we can pad them if not. The protocol proceeds as follows.

1. Define the multilinear extension of the output array as W̌0. Both P and V will run a slightly modified degree 3
Sumcheck to prove the correctness of

W̌0(z) = ∑
b,c∈{0,1}s1

ˇadd0(z, b, c)(W̌1(b) + W̌1(c)) + ˇmult0(z, b, c)(W̌1(b) · W̌1(c)) ∀z ∈ Z
s0
pk

2. P and V will now turn that into an equality in the Galois Ring by considering the trivial inclusion Zpk ∈
GR(pk, d). The polynomial will be the same as the coefficients will still be in Zpk , but we will think of them as
elements in GR(pk, d).

3. The verifier will choose a random challenge r0 ∈ GR(pk, d)s′0 and send it to the prover. The prover and verifier
will compute W0(r0).

4. They will now run a classic sumcheck over Galois Rings to prove that

Ŵ0(r0) = ∑
b,c∈{0,1}s1

ˆadd0(r0, b, c)(Ŵ1(b) + Ŵ1(c)) + ˆmult0(r0, b, c)(Ŵ1(b) · Ŵ1(c))

5. At the end of the sumcheck protocol the verifier will have to evaluate the right hand side of the equation in the
random point (rb, rc) but V doesn’t have access to Ŵ1(z). The prover will send the claimed values cb = Ŵ1(rb)
and cc = Ŵ1(rc) and the verifier will check the last equality with those values.

6. The prover and verifier will continue with the protocol to prove the correctness of the claimed evaluations of W1.
Consider the linear function l1 : GR(pk, d) → GR(pk, d)s1 such that l1(0) = rb and l1(1) = rc. Then the
prover will send the univariate polynomial q1 = W1 ◦ l1 : GR(pk, d)→ GR(pk, d) to the verifier. The verifier
will check that q(0) = cb and q(1) = cc.

7. The verifier will choose a new random challenge r′1 ∈ GR(pk, d) and define r1 = l1(r′1) and send it to the
prover. They will now recurse the protocol to prove that

Ŵ1(r1) = ∑
b,c∈{0,1}s1

ˆadd0(r1, b, c)(Ŵ2(b) + Ŵ2(c)) + ˆmult0(r1, b, c)(Ŵ2(b) · Ŵ2(c))

8. On the last round of the GKR protocol the verifier will receive Ŵm(rm) which can also be computed from the
input. V will compute it and compare if they are equal, accept if they are and reject otherwise.

mapping from Definition 2.4 and the RMFE from
Definition 2.5.

We will now present a third tool called the trivial
inclusion that sends a value to itself, but in the Galois
Ring.

Definition 5.1. We will define the trivial inclusion map-
ping as

Ψ : Zpk →GR(pk, n)

x 7→x

This is well defined as Zpk ⊆ GR(pk, d).
We haven’t used this mapping as in the previous

cases, even though it would have worked, it would
bring a O(n) overhead factor to the whole protocol.
In the GKR case, even though it has an O(log n) over-
head factor in comparison to the protocol presented

in the next section, it presents such a simple construc-
tion that is worth considering.

5.1 Protocol construction

The protocol will be the same as the classic one, but
the sent challenges will be from the Galois Ring in-
stead of Zpk .

The prover during each of it’s rounds will prove to
the verifier the correctness of the polynomial equality

W̌i(z) = ∑
b,c∈{0,1}s1

ˇadd0(z, b, c)(W̌i+1(b) + W̌1(c))+

ˇmult0(z, b, c)(W̌i+1(b) · W̌1(c))

Since we have that f ∈ Zpk [X1, · · · , Xsi ], then f ∈
GR(pk, d)[X1, · · · , Xsi ]. We then know that we can
prove the previous equality using the Galois Ring

14
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version of the Schwartz Zipple lemma evaluating in
a random point.

At the beginning of the protocol the verifier will
choose a random challenge r0 ∈ GR(pk, d) and send
it to the prover. The prover and the verifier will
now proceed to run the sumcheck protocol sending
random challenges from GR(pk, d) to prove that

W̌0(r0) = ∑
b,c∈{0,1}s1

ˇadd0(r0, b, c)(W̌1(b) + W̌1(c))+

ˇmult0(r0, b, c)(W̌1(b) · W̌1(c))

At the last step of the protocol the verifier will
have to evaluate the right hand side of the equa-
tion. Nonetheless V doesn’t have access to W1(z)
and therefore can’t compute the values W1(rb) and
W1(rc). The prover will send the claimed values
cb = W1(rb) and cc = W1(rb) and the verifier will
use those values to check the last equality of the
sumcheck protocol.

The verifier and the prover will now proceed to
prove the correctness of the claimed evaluations of
W1(z). To do that P will build the linear function
l1 : GR(pk, d)→ GR(pk, d)s1 such that l1(0) = rb and
l1(1) = rc and send q1 = W1 ◦ l1 to the verifier. The
verifier will check that q1(0) = cb and q1(1) = cc.

The verifier will then choose a random challenge
r′1 ∈ GR(pk, d) and define r1 = l1(r′1). They will now
recurse the protocol to prove

q1(r′1) = W̌1(r1) = ∑
b,c∈{0,1}s2

ˇadd1(r1, b, c)(W̌2(b)+

W̌1(c)) + ˇmult1(r1, b, c)(W̌2(b) · W̌1(c))

Once the protocol gets to the last round, the verifier
will receive Ŵm(rm) which is a value he can compute
as he has access to the input. He will compute this
value and compare to the claimed one, accept if it’s
equal, reject otherwise.

The soundness of the protocol won’t be discussed
as it’s proofs are the same as the ones in the original
GKR protocol, but now using the new Schwartz Zip-
ple lemma and similar proofs have also been done in
previous sections.

5.2 Complexity analysis

We will first analyse the complexity of the protocol if
we where to run it naively and then using techniques
from the Libra paper.

Each sumcheck of the protocol can be done in
O(2si22si T) where O(T) is the time to evaluate the
right hand side of the equation. We know that
the right hand side is the product of multilinear
polynomials, one of them being of 2si variables

(in GR(pk, d)) and therefore we can assume that if
the evaluations where computed naively O(T) =
O(22si d log d).

If we consider Ms = maxisi and assume O(si) =
O(Ms), then the overall complexity of the protocol
will be

O(mMs24Ms d log d)

We can greatly reduce the complexity of the pro-
tocol by applying the techniques presented in the
Libra paper. Since they will be later used in a more
complex scenario, we won’t present them here.

For this case we use the same algorithms, just hav-
ing the random values from the Galois Ring instead
of a finite field, increasing the complexity from the
Libra GKR by O(d log d), where d is the security pa-
rameter. We end up having an overall complexity
of

O(m2Ms d log d)

which is O(Ms23Ms) times better than the naive ap-
proach.

On the verifier side during each sumcheck he will
receive si values in GR(pk, d) and one polynomial of
degree si at the end. V will have to evaluate this poly-
nomial on three points along with the evaluations of
multi and addi which we assume that can be done in
O(T) time. This gives an overall verifier complexity
of

O(mTMs log Ms)

The total proof size will be

O(mMs)

We can summarize all the costs in the following
table:

Proof size O(mMs)
V time O(mTMs log Ms)

P time O(m2Ms d log d)

Table 3: Complexity analysis Protocol 5

6 GKR over Zpk via RMFE

Having seen both the Sumcheck and degree D Sum-
check over Zpk we can now present it’s first use case
in the construction of the GKR protocol over Zpk .

This protocol presents a challenge, since it relies
on recursivity by reducing a claim from one layer
to a claim in the previous one. In the original GKR
protocol, this claim is the evaluation of a polynomial
in two points that is needed in the last step of the
Sumcheck, nonetheless in our case this evaluation
is on the Galois Ring, but the next polynomial has
to fully be in Zpk to apply the previous presented
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Protocol 6 (GKR protocol via RMFE). Let C : Z
Sinput

pk → Z
Soutput

pk be a m-depth layered arithmetic circuit. Without

loss of generality assume Si are all powers of 2 and we can pad them if not. Define si = log Si and s′i = si −
log n

2 .
Let (ϕ, ψ) be the RMFE pair that will be used throughout the protocol. The protocol proceeds as follows.

1. Define the multilinear extension of the output array as W̌0. Both P and V will run a slightly modified degree 3
Sumcheck to prove the correctness of

W̌0(z) = ∑
b,c∈{0,1}s1

ˇadd0(z, b, c)(W̌ ′1(b) + W̌ ′1(c)) + ˇmult0(z, b, c)(W̌ ′1(b) · W̌ ′1(c)) ∀z ∈ Z
s0
pk

2. During the setup phase, we will split the batching parameters equally between the 2 variables b and c. That
means we will have Ŵ ′1 ∈ GR(pk, d)[X1, · · · , Xs′1

]. P will compute the GR(pk, d) polynomial in z

H0(z) = ∑
b,c∈{0,1}s′1

ˆadd0(z, b, c)(Ŵ ′1(b) + Ŵ ′1(c)) + ˆmult0(z, b, c)(Ŵ ′1(b) · Ŵ ′1(c))

and both P and V will compute Ŵ0(z).
3. The verifier will choose a polynomial vector l0 : GR(pk, d) → GR(pk, d)s′0 with the coefficients in Zpk and

send it to the prover. The prover will compute H0 ◦ l0 and send it to the verifier. The verifier will check that
ψ(H0 ◦ l0) = ψ(Ŵ0 ◦ l0) by checking that the ψ image of each coefficient in the polynomials is equal.

4. They will proceed with the interactive phase of the protocol now proving

H0(l0(z)) = ∑
b,c∈{0,1}s′1

ˆadd0(l0(z), b, c)(Ŵ ′1(b) + Ŵ ′1(c)) + ˆmult0(l0(z), b, c)(Ŵ ′1(b) · Ŵ ′1(c))

5. They will then run the Sumcheck Protocol the same way it’s done in Protocol 4. We will define rb and rc to be
the random challenges in GR(pk, d) sent by the verifier. The Sumcheck protocol will run until the point where
V has to evaluate the polynomial in the last iteration.

6. During this last step of the Sumcheck the prover will send the needed evaluations cb = W ′1(rb) and cc = W ′1(rc)
to the verifier and V will check that the equality holds.

7. They will now proceed to prove the correctness of these evaluations. The prover will construct the two polynomial
vectors l1b and l1c such that l1b(ξ) = rb and l1c(ξ) = rc. P will send the polynomials Ŵ ′1(l1b), Ŵ ′1(l1c),
Ŵ1(y, l1b) and Ŵ1(y, l1c) to the verifier and V will check the polynomial equality

n

∑
i=0

ψ(Ŵ1(·, l1∗(z)))(y)[i] = ψ(Ŵ ′1(l1∗(z)))[y] ∀y ∈ {0, 1}log n

to ensure that all four sent polynomials come from the same W1.
8. V will choose two random polynomials α1, β1

$← Z<d
pk [X] and a random vector polynomial l1 : Zn

pk → Z
log n
pk

with each polynomial of degree < d. then P will now compute the polynomial G1(z) = α1(z)H1(l1(z), l1b(z))+
β1(z)H1(l1(z), l1c(z)) defined as follows

G1(z) := ∑
b,c∈{0,1}s′1

(
α1(z) ˆaddo(l1(z), l1b(z), b, c) + β1(z) ˆaddo(l1(z), l1c(z), b, c)

)
(Ŵ ′2(b) + Ŵ ′2(c))+

(
α1(z) ˆmulto(l1(z), l1b(z), b, c) + β1(z) ˆmulto(l1(z), l1c(z), b, c)

)
(Ŵ ′2(b) · Ŵ ′2(c))

(7)
and send it to the verifier. P and V will also compute α1(z)Ŵ1(l1(z), l1b(z)) + β1(z)Ŵ1(l1(z), l1c(z)). The
verifier will check that ψ(α1(z)Ŵ1(l1(z), l1b(z)) + β1(z)Ŵ1(l1(z), l1c(z))) = ψ(Ĝ1(z)) by checking the
equality in each coefficient.

9. P will now run a sumcheck protocol to prove 7. At the last step V will need the evaluations of Ŵ2 in two points.
This will be solved the same way as before and the algorithm will run recursively until it reaches the last layer
where the verifier will compute Ŵm from the known input layer and check the last equality.
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Sumchecks. To solve this we will modify the idea
presented by Chiesa et al. in [2] where the claim
of the evaluations of the polynomial on two points
is combined into one sumcheck by using a linear
combination.

Consider C to be an m-layered circuit over Zpk with
each layer having Si gates. Without loss of generality
we will consider Si to be a power of 2 and if that is not
the case we will pad it until it is with dummy gates.
We will define si = log Si. Consider Wi : {0, 1}si →
Zpk to be the function that gets as input a gate label
in layer i and outputs the output of that gate. Let
W̌i : Z

si
pk → Zpk be it’s multilinear extension. Let

ˇaddi and ˇmulti be the multilinear extensions of addi
and multi.

Given a function f : Zl
pk → Zpk we previously saw

that

H = ∑
b1,··· ,bl∈{0,1}

f (b1, · · · , bl)

is equivalent to


H1
H2
...

Hn

 = ∑
b1,··· ,bl∈{0,1}


f (0, · · · , 0, 0, blog n+1, · · · , bl)

f (0, · · · , 0, 1, blog n+1, · · · , bl)
...

f (1, · · · , 1, 1, blog n+1, · · · , bl)


and H = ∑n

i=1 Hi.
This batching in the GKR case will bring some

problems when recursing the protocol. During the
protocol we will be working with polynomials of
the form addi : {0, 1}si × {0, 1}si+1 × {0, 1}si+1 → Zpk

and when transforming this function into a polyno-
mial vector we will be splitting the batching param-
eters into the 2 last variables equally for simplicity
purposes. We will need n such that 2| log n. We de-
fine s′i = si −

log n
2 for i ∈ [m]. After the batching

we will end up with polynomial vectors of the form
addi : {0, 1}si × {0, 1}s′i+1 × {0, 1}s′i+1 → Zn

pk .

Let’s see this batching more in depth with the
specific functions from the GKR. Assume we have
the equality that we want to batch

W̌0(z) = ∑
b,c∈{0,1}s1

ˇadd0(z, b, c)(W̌1(b) + W̌1(c))

+ ˇmult0(z, b, c)(W̌1(b) · W̌1(c)) ∀z ∈ Z
s0
pk

then we will batch the variables b and c and end up
with

H0(z) := ∑
b,c∈{0,1}s′1

ˆadd0(z, b, c)(Ŵ ′1(b) + Ŵ ′1(c))

+ ˆmult0(z, b, c)(Ŵ ′1(b) · Ŵ ′1(c)) z ∈ GR(pk, d)si

with Ŵ ′1 : GR(pk, d)s′1 → GR(pk, d)n being

Ŵ ′1(z
′) = ϕ(


W̌1(0, · · · , 0, 0, z′)
W̌1(0, · · · , 0, 1, z′)

...
W̌1(1, · · · , 1, 1, z′)

)

We are using Ŵ ′1 instead of Ŵ1 since we will later
define Ŵ1 as the ϕ image of

W̌1(z) = ∑
b,c∈{0,1}s2

ˇadd1(z, b, c)(W̌2(b) + W̌2(c))

+ ˇmult1(z, b, c)(W̌2(b) · W̌2(c))

During the GKR protocol we will be using a (ϕ, ψ)
Degree 3 RMFE pair since we will need to do that
many Galois Ring multiplications before using ψ at
some point. Finally, we define Ms = maxi∈[m] si.

With this in mind and using the notation previ-
ously presented we can now view the protocol con-
struction.

6.1 Protocol construction

The main skeleton of the protocol will be equal to
the one in the GKR protocol presented by Chiesa et
al. in [2].

P and V will first compute the polynomial W0 from
the output of the circuit as well as W1 from the last
layer. They will also compute add0 and mult0 and
then extend all 4 functions to multilinear polynomials
W̌0, W̌1, ˇadd0 and ˇmult0.

These 4 functions will follow the following equality

W̌0(z) = ∑
b,c∈{0,1}s1

ˇadd0(z, b, c)(W̌1(b) + W̌1(c))

+ ˇmult0(z, b, c)(W̌1(b) · W̌1(c)) ∀z ∈ Z
s0
pk

The prover and verifier will now run a modified
version of a degree 3 Sumcheck protocol.

They will first compute the polynomial vector ver-
sion of the equality by splitting the batching pa-
rameters into the 2 variables b and c. If we define
s′i = si−

log n
2 then this will result in this new equality

of polynomial vectors:

W̃0(z) = ∑
b,c∈{0,1}s′1

˜add0(z, b, c)(W̃ ′1(b) + W̃ ′1(c))

+ ˜mult0(z, b, c)(W̃ ′1(b) · W̃ ′1(c)) ∀z ∈ Z
s0
pk

Using ϕ from the Degree 3 RMFE pair, P will
transform this to a summation of a polynomial over
GR(pk, d) the same way it was done in Protocol 4.
V will transform W̃0(z) to Ŵ0(z). We will therefore
have
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∑
b,c∈{0,1}s′1

ˆadd0(z, b, c)(Ŵ ′1(b) + Ŵ ′1(c))

+ ˆmult0(z, b, c)(Ŵ ′1(b) · Ŵ ′1(c))

and Ŵ0(z) ∈ GR(pk, d)[X1, · · · , Xs′0
].

In the classic GKR protocol, the verifier would now
send a random challenge in GR(pk, d). In our case,
we can’t do that in all layers because of the recursion
problem, we need to send something we can trans-
form via ψ. We will therefore send a polynomial with
integer coefficients that goes through a random point
in GR(pk, d). This way, by proving the polynomial
equality, we will have proven the equality in this
specific random point.

We will first prove that such polynomial exists for
any point in GR(pk, d).

Lemma 6.1. Any value in x ∈ GR(pk, d)n can be the
result of the evaluation at point ξ of a vector polynomial
l : GR(pk, d) → GR(pk, d)n where each polynomial has
all the coefficients in Zpk and is of degree less than d.

Proof. We know by construction that {1, ξ, · · · , ξd−1}
is a basis of the Zpk module GR(pk, d). There-

fore any value x ∈ GR(pk, d) can be written as
x = ∑d−1

i=0 aiξ
i ai ∈ Zpk . If we consider the poly-

nomial f (y) = ∑d−1
i=0 aiyi, then this polynomial evalu-

ates to x at point ξ. We can do the same with a vector
polynomial l : GR(pk, d) → GR(pk, d)n by having a
polynomial in each coordinate such that at point ξ it
evaluates to xi, and therefore l(ξ) = x.

The verifier will then choose a random point in
GR(pk, d)s0 and send the vector polynomial l0 with
coefficients in Zpk that goes through that point when
evaluated at ξ to the prover.

The prover and the verifier will compute Ŵo ◦ l0
and the prover will send a polynomial H0 ◦ l0 claimed
to be

H0(l0(z)) := ∑
b,c∈{0,1}s′1

ˆadd0(l0(z), b, c)(Ŵ1(b)+

Ŵ1(c)) + ˆmult0(l0(z), b, c)(Ŵ1(b) · Ŵ1(c))

The verifier will now check that the equality ψ(H0 ◦
l0) = ψ(W0 ◦ l0) holds by checking the equality in
each of the at most d · s0 coefficients of the univariate
polynomial.

Those polynomials are degree d · s0 polynomials,
nonetheless there is a trick we can use to reduce
them to degree d or less after the previous check has
been done. We just use the polynomials because
we want to prove their equality at point ξ. If q
is a degree d irreducible polynomial over Fp and
GR(pk, d) = Zpk [X]/(q) then we can reduce the de-
gree d · s0 polynomials modulo q. Even though the

resulting polynomial won’t evaluate to the same as
the original one at all points, it will at point ξ, as ξ is
a root of polynomial q.

This reduction needs to be done after the verifica-
tion made by the verifier, or else the equality won’t
hold. If q is sparse enough, this reduction can be
done in linear time and both V and P will do it
for the polynomial H0 ◦ l0. With this reduction, the
prover time of the protocol will decrease in a factor
of O(d).

They will now proceed to do a Sumcheck Protocol
with this polynomials, that is that in each round, the
prover will be sending a degree d polynomial in z
instead of a value.

During this sumcheck protocol, the verifier will be
sending random challenges in GR(pk, d). Let rb and
rc be the random challenges sent(both elements in
GR(pk, d)s′1 ).

The protocol will run until the last step, where the
verifier will have to evaluate the right hand side of
the equation. Nonetheless V doesn’t have access to
Ŵ ′1 and therefore can’t compute Ŵ ′1(rb) and Ŵ ′1(rc).

The prover will send the two evaluations to the ver-
ifier cb := Ŵ ′1(rb) and cc := Ŵ ′1(rc) and the verifier
will check the last step of the Sumcheck with those
values.

They will then proceed to prove the correctness of
those evaluations.

In the classic sumcheck this would be done by us-
ing a line that goes through those two random values,
and then use the composition with W1. Nonetheless
it’s not always possible to find a vector polynomial
with integer coefficients that goes through two spe-
cific values in GR(pk, d)s′1 . This is why we had to
move from the classic GKR to the approach provided
in [2].

In this approach we merge together both claims us-
ing a linear combination and doing both Sumchecks
at once. We will therefore choose two random values
in GR(pk, d). We will see in the soundness section
that if α′1, β′1 are random values in GR(pk, d) then it’s
enough for the prover to show the correct evalua-
tion of α′1H1(rb) + β′1H1(rc) (H1 defined the same
way H0 was defined) to prove the correctness of the
evaluations of H1(rb) and H1(rc).

If we just did this, we would encounter two prob-
lems that would make the polynomials in which we
want to apply the recursion have values in GR(pk, d)

that are not ϕ images of values in Z
s′1
pk . The first

would be the multiplying random values α′1 and β′1.
The second would be the random values rb and rc
evaluated in ˆadd1 and ˆmult1.

We use a similar idea in both cases. For the first
problem, thanks to Lemma 6.1 we can build two
polynomials α1, β1 ∈ Z<d

pk [X] such that α1(ξ) = α′1
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and β1(ξ) = β′1. Instead of using the values, we will
prove the equality as polynomials with coefficients
in Zpk .

For the second problem we will build two poly-
nomial vectors l1b and l1c with coefficients in Zpk

such that l1b(ξ) = rb and l1c(ξ) = rc and use those
instead of the values.

Before the verifier sends the random challenges
αi and βi, the prover will send the polynomials
Ŵ ′1(l1b(z)) and Ŵ ′1(l1c(z)). The prover will also send
the polynomials Ŵ1(y, l1b(z)) and Ŵ1(y, l1c(z)) for

y ∈ GR(pk, d)
log n

2 (Ŵ1 defined the same way it was
done with Ŵ0). The verifier will have to check that
the polynomial Ŵ ′1 ◦ l1∗ comes from Ŵ1(y, l1∗(z)).

Since we have that

Ŵ ′1(l1∗(z)) = ϕ(


W̌1(0, · · · , 0, 0, l1∗(z))
W̌1(0, · · · , 0, 1, l1∗(z))

...
W̌1(1, · · · , 1, 1, l1∗(z))

)

then the verifier will simply have to check that

n

∑
i=0

ψ(Ŵ1(·, l1∗(z)))(y)[i] = ψ(Ŵ ′1(l1∗(z)))[y]

for all y ∈ {0, 1}log n. This comes from the fact
that both the left and right hand terms equal to
W1(y, l1∗(z)). With that the verifier can ensure that
both Ŵ ′1 ◦ l1∗ and Ŵ1(y, l1∗(z)) come from the same
W1.

The verifier will now need to send another ran-
dom vector polynomial to fill the first log n empty
variables. V will send to P the vector polynomial
l1 : Zn

pk → Z
log n
pk .

We will end up proving the correctness of the eval-
uations of H1 by proving the following equality:

ψ(α1(z)H1(l1(z)l1b(z) + β1(z)H1(l1(z), l1c(z)) =

ψ( ∑
b,c∈{0,1}s′1

[α1 ˆadd1(l1(z), l1b(z), b, c)+

β1 ˆadd1(l1(z), l1c(z), b, c)] · (Ŵ ′2(b) + Ŵ ′2(c))+

[α1 ˆmult1(l1(z), l1b(z), b, c)+

β1 ˆmult1(l1(z), l1c(z), b, c)] · (Ŵ ′2(b) · Ŵ ′2(c)))
(8)

The protocol will go as follows. If we define

Hi(z) := ∑
b,c∈{0,1}s′i+1

ˆaddi(z, b, c)(Ŵ ′i+1(b)+

Ŵi+1(c)) + ˆmulti(z, b, c)(Ŵ ′i+1(b) · Ŵi+1(c))

then the prover will send to the verifier
the polynomial G(z) = α1(z)H1(l1(z), l1b(z)) +
β1(z)H1(l1(z), l1c(z)). The verifier will now

check that ψ(G(z)) = ψ(α1(z)Ŵ1(l1(z), l1b(z)) +
α1(z)Ŵ1(l1(z), l1c(z))) (checking the equality in each
coefficient) and that G(ξ) = αi(ξ)cb + βi(ξ)cc.

After this checks are done, the prover and verifier
can now reduce again the degree of the univariate
polynomial G(z) by computing modulo q.

They will then proceed to prove the correctness of
sum 8 using the Sumcheck protocol. At the end we
will face the same problem of needing the evaluation
of the polynomial which will be solved the same way
as the first time.

They will recurse the protocol until the claim is the
evaluations of the first layer, the input layer. Since the
verifier has access to the input values, V can compute
Ŵ ′m(rb) and Ŵ ′m(rc) to check the equality and finish
the last Sumcheck.

Even though this protocol may seem very complex,
using the ideas presented in the Libra paper [9] the
prover can run it with just O(nS) time, that means
quasilinear in the size of the circuit, with just an
overhead factor of the security parameter.

6.2 Completeness and soundness analysis

We will see first the protocol completeness, that is
that if the prover is honest, the verifier will always
accept. To do so we need to ensure that all checks
from the verifier pass.

The first check the verifier does is ψ(H0 ◦ l0) =
ψ(Ŵ0 ◦ l0) by checking the equality of the image ψ
of the polynomial coefficients. In this equation and
all the ones we encounter throughout the protocol, at
most 3 different polynomials are multiplied together
making it so that we only need a degree 3 RMFE.

To prove the correctness of the previous equality
we will present this simple lemma. This lemma will
also help us prove the correctness of the other equal-
ity checks we encounter throughout the protocol of
the form

ψ(αi(z)Ŵi(lib(z)) + βi(z)Ŵi(lic(z))) = ψ(Gi(z))

Lemma 6.2. With the construction presented in Proto-
col 6, the equality

ψ(Hi ◦ l) = ψ(Ŵi ◦ l)

always holds.

Proof. We have by construction that if

H̃i(z) := ∑
b,c∈{0,1}s′i+1

˜addi(z, b, c)(W̃ ′i+1(b)+

W̃ ′i+1(c)) +
˜multi(z, b, c)(W̃ ′i+1(b) · W̃ ′i+1(c))

then
W̃i(z) = H̃i(z)
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which also implies that

W̃i(li(z)) = H̃i(li(z))

Since ϕ is a degree 3 RMFE and we have at most 3
polynomials multiplied together in each side of the
equation, we will have

ψ(Ŵi(li(z))) = ψ(ϕ(W̃i(li(z)))) =

ψ( ∑
b,c∈{0,1}s′i+1

ϕ( ˜addi(li(z), b, c))·

(ϕ(W̃ ′i+1(b)) + ϕ(W̃ ′i+1(c)))+

ϕ( ˜multi(li(z), b, c))(ϕ(W̃ ′i+1(b)) · ϕ(W̃ ′i+1(c)))) =

ψ(Hi(li(z)))

which is what we wanted to prove:

ψ(Hi ◦ l) = ψ(Ŵi ◦ l)

Lemma 6.3. With the construction presented in Proto-
col 6, the equality

ψ(αi(z)Ŵi(lib(z)) + βi(z)Ŵi(lic(z))) = ψ(Gi(z))

always holds.

Proof. By construction we have

Gi(z) = αi(z)Hi(lib(z)) + βi(z)Hi(lic(z))

Using Lemma 6.2 we also have ψ(Hi ◦ lib) = ψ(Ŵi ◦
lib) and ψ(Hi ◦ lic) = ψ(Ŵi ◦ lic).

Since ψ is a linear function and αi and βi polyno-
mials with integer coefficients and using Lemma 6.2
we have

ψ(αi(z)Ŵi(lib(z)) + βi(z)Ŵi(lic(z))) =

αi(z)ψ(Ŵi(lib(z))) + βi(z)ψ(Ŵi(lic(z))) =

αi(z)ψ(Hi(lib(z))) + βi(z)ψ(Hi(lic(z))) = ψ(Gi(z))

Theorem 6.4. If the prover is honest, then when running
Protocol 6 the verifier will always accept, and therefore the
protocol is complete.

Proof. The verifier will reject in two cases:

• The equality ψ(H0 ◦ l0) = ψ(Ŵ0 ◦ l0) doesn’t
hold.

• The equality ψ(αiŴi(lib(z)) + βiŴi(lic(z))) =
ψ(Gi(z)) doesn’t hold.

• One of the Sumcheck protocols fails at some
point.

We saw in Lemma 6.2 and Lemma 6.3 that the
first and second case won’t happen as long as the
prover is honest. The third case won’t happen either
as we saw that the Sumcheck protocol is complete in
a previous section.

Therefore Protocol 6 is complete.

The only thing left for us to prove is the soundness
of the protocol.

Lemma 6.5. If ψ(Hi ◦ li) = ψ(Ŵi ◦ li) then ψ(Hi) =
ψ(Ŵi).

Proof. This comes from the fact that both Hi and Ŵi
are multilinear polynomials of at most Ms variables,
and therefore we just need equality in 2Ms points
from an interpolation subset which we have since
the domain of li is GR(pk, d) and this domain has pd

elements in it’s interpolation subset.

The previous lemma provides a proof of 0 sound-
ness error with the conversion from a multilinear
polynomial to a univariate polynomial. We now need
to check how does soundness behave when doing a
linear combination of two claims.

Lemma 6.6. Given αi and βi random polynomials in
Z<d

pk [X] if

ψ(αi(z)Ŵi(lib(z)) + βi(z)Ŵi(lic(z))) = ψ(Gi(z))

then with soundness error of O(p−k) we have that

ψ(Ŵi) = ψ(Hi)

Proof. Using linearity of ψ the first equation can be
written as

αi(z)ψ(Ŵi(lib(z))) + βi(z)ψ(Ŵi(lic(z))) = ψ(Gi(z))

which using Lemma 6.5 we can reduce the claim to
prove that given αi(z) and βi(z) random polynomials

αi(z) · a + βi(z) · b = αi(z) · c + βi(z) · d

then with a soundness error of p−k

a = c b = d

If we assume a ̸= c, then we will have

αi(z)(a− c) = βi(z)(d− b)

In particular the equality will hold when evaluat-
ing the polynomial at point ξ. Since the evaluation
of polynomials in Z<d

pk [X] is a bijective mapping be-

tween Z<d
pk [X] and GR(pk, d), we can imagine the

equality with αi and βi being random elements in
GR(pk, d).

αi(a− c) = βi(d− b)
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We can transform this to an evaluation of a poly-
nomial f (x, y) = x(a − c) + y(b − d) at two ran-
dom points in GR(pk, d) which is zero with prob-
ability p−d thanks to the Galois Rings version of the
Schwartz Zipple Lemma presented in Corollary 2.3.1.

That concludes the proof and gives a soundness
error of p−d to this part of the protocol.

6.3 Complexity analysis

We will do a naive complexity analysis like we did on
the previous sections and then we will see how we
can improve the prover complexity to be quasilinear
in the circuit size by using ideas presented in the
Libra paper [9].

Observe that during the protocol the prover will be
sending to the verifier the composition Ŵi ◦ li with li
a degree d polynomial, therefore the composition will
be a univariate polynomial of degree d2 in GR(pk, d).
Nonetheless this will only have to be done once per
layer, as the sumcheck can be done with a degree
d polynomial in z. This reduction can be done in
O(d) time if the quotient polynomial is chosen to be
sparse.

We can now imagine doing a Sumcheck with a
degree d polynomial as doing d Sumchecks together,
and therefore the complexity will be the one of doing
one sumcheck multiplied by d.

Taking into account that O(d) = O(n) (that is be-
cause d ≈ 3n) and assuming that O(s′i) = O(M′s) =
O(Ms), each Sumcheck of the protocol can be done
in time

O(ds′i2
2s′i T) = O(Ms22Ms−log nT) =

O(Ms22Ms
T
n
)

Then we will do m Sumchecks of 2si variables
each with those degree d polynomials and using a
degree 3 RMFE. This can be done naively in time
O(mMs22Ms T

n ).
Observe that we can also compute O(T) since

we know that the functions are multilinear poly-
nomials of at most 2M′s variables and therefore at
most 22M′s monomials. Taking into account that
those monomials are in GR(pk, d), we end up with
O(T) = O(22Ms n log n) and that gives us a total
prover time of

O(mMs24Ms log n)

On the verifier side, V will run a total of m Sum-
checks with each sumcheck having 2si variables and
sending polynomials of degree d in each round. The
verifier will also have to evaluate the polynomials
addi and multi to check on the last step the equality
which can be done in time O(T). V will also have to

compute once each round the ψ image of a degree
d2 polynomial which can be done in O(d4) time. The
verifier will therefore have to do d products of ele-
ments in GR(pk, d) in each round, 2s′i rounds and an
evaluation at the last round ending up with a total
verifier complexity of

O(m(n log n(n + T) + n4))

which is much faster than computing the whole cir-
cuit. Compared to the classic sumcheck, the verifier
will generally have an overhead factor of O(n log n).

Finally the proof size will be m layers, each layer
having a sumcheck and each sumcheck having 2s′i
rounds. In each round a polynomial of degree O(d)
in GR(pk, d) is sent giving us a total proof size of

O(mMsd)

We can also consider S to be the size of the circuit
and we would then have O(2M

s ) = O(S).
We can see all costs summarized in the following

table

Proof size O(mMsd)
V time O(m(n log n(n + T) + n4))
P time O(mMsS2T log n)

Table 4: Complexity analysis Protocol 6

The prover time is really large, being quadratic on
the circuit size multiplied by the time to evaluate a
degree 2si polynomial. Nonetheless we can greatly
reduce it to a quasilinear time in the circuit size by
using the ideas presented in the Libra paper [9].

6.4 Quasilinear time sumcheck for GKR
functions in GR(pk, d)

If we now think to apply the quasilinear time sum-
check presented in section 4, we would still not end
up with a quasilinear time sumcheck in the layer size
of the GKR, since we still have multilinear polyno-
mials of 2s′i variables. We would therefore have an
algorithm close to quadratic in the circuit size.

Nonetheless, the same way it was done in the Libra
paper [9], we can use the fact that if we have

W̌i(z) = ∑
b,c∈{0,1}si+1

ˇaddi(z, b, c)(W̌i+1(b) + W̌i+1(c))

+ ˇmulti(z, b, c)(W̌i+1(b) · W̌i+1(c)) ∀z ∈ Z
si
pk

then both ˇaddi(z, x, y) and ˇmulti(z, x, y) are the
multilinear extension of very sparse arrays with
O(2si ) (out of O(2si+2si+1) possible elements) nonzero
elements.

Once we send this functions to the Galois Ring
via ϕ, we will be batching them together in groups
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of n, and therefore, since ϕ is linear and ϕ(0) =
0, we will have around O(2si ) nonzero elements in

ˆaddi(z, x, y) and ˆmulti(z, x, y) out of the O(2si+2s′i+1)
possible elements.

We will first consider the case with no addition
gates and rewrite the sumcheck equation in the fol-
lowing way:

Ŵi(z) = ∑
b,c∈{0,1}s′i+1

ˆmulti(z, b, c)(Ŵi+1(b) · Ŵi+1(c)) =

= ∑
b∈{0,1}s′i+1

Ŵi+1(b) ∑
c∈{0,1}s′i+1

ˆmulti(z, b, c) · Ŵi+1(c) =

= ∑
b∈{0,1}s′i+1

Ŵi+1(b)ĥi+1(z, c)

with

ĥi+1(z, c) = ∑
c∈{0,1}s′i+1

ˆmulti(z, b, c) · Ŵi+1(c)

Then we will do two Sumchecks, each of them in
quasilinear time.

Phase one With this first sumcheck we prove the
equality on the b variable

Ŵi(z) = ∑
b∈{0,1}s′i+1

Ŵi+1(b)ĥi+1(z, c)

Initializing the bookkeeping table for Ŵi+1 in
O(2s′i+1 n log n) = O(2si+1

√
n log n) time is easy since

ϕ is a linear function and the images of W̃i+1 in
{0, 1}s′i+1 are the ones given by the array from which
the multilinear extension was generated from. The
images of Ŵi+1 in the hypercube will just be the ϕ
images of the computed values. To send those im-
ages to the ring we would need O(2s′i+1 n log n) =
O(2si+1

√
n log n) time.

Once we have the bookkeeping table we for Ŵi+1
we can find the evaluations needed for the Sumcheck
in O(2si+1

√
n log n) time the same way it was done

in Algorithm 1.
Computing the bookkeeping table for ĥi+1(z, c) in

quasilinear time is not that easy. The two problems
we face here are:

1. We need 22si evaluations of ˆmulti. This problem
is solved in Libra using the sparsity of the array
it comes from.

2. When computing the ϕ image of the batched, we
will end up with 2si nonzero elements, not 2s′i

which might be a problem. This will be solved
later on.

Let’s see first how we adapt Libra’s solution to our
case first and then we will solve the second problem

To do so we rewrite this polynomial in the follow-
ing way

ĥi+1(z, b) = ∑
c∈{0,1}s′i+1

ˆmulti(l(z), b, c)Ŵi+1(c) =

∑
s,c∈{0,1}s′i+1

I(l(z), s) ˆmulti(s, b, c)Ŵi+1(c)

where we have

I(w, s) =
s′i+1

∏
i=1

((1− wi)(1− si) + wisi)

the identity polynomial.
The equality is given trivially by uniqueness of

multilinear extensions.
Now we have that the images of multi(s, b, c) on
{0, 1}si×s2

i+1 can be trivially computed in time O(2si )
as they come come from a sparse array with only
2si nonzero elements. Therefore we can also com-
pute the images of ˜multi(s, b, c) on {0, 1}si×s′2i+1 in
time O(2si ). This function ˜multi will still have O(2si )

nonzero elements, not O(2s′i ), as each batched param-
eter evaluated has at most one nonzero element out
of all the elements. Therefore:

Im( ˜multi|{0,1}si×s′2i+1
) = {0, e1, · · · , en}

where ei is the vector with all zeros but in position
i where there is a 1.

If we where now to send the images of ˜multi to
the Galois Ring trivially, we would have to evaluate
ϕ a total of 2si times, since it has that many nonzero
elements. This would give us an overall complexity
of O(2si n log n) which has too big of an overhead for
the protocol to be useful.

This problem can be solved by using the fact that
|Im( ˜multi|{0,1}si×s′2i+1

)| = n + 1 and therefore we can

precompute the ϕ images of those functions in time
O(n2 log n) and then use them to compute the ϕ im-
ages of the images of ˜multi in time O(2si ). This
would solve problem 2 mentioned previously.

We already have the images of Wi+1 from the pre-
vious computation, so we now just need the images
of I(l(z), s) for s ∈ {0, 1}si . We can do this with
the procedure L presented in Algorithm 2. This
bookkeeping table will store polynomials on z with
integer coefficients (since l had integer coefficients)
and therefore the algorithm will run in O(2si n log n).

With all this we can compute the bookkeeping
table Ahl

in time O(2si n log n) as we know that there

are at most O(2si ) elements in {0, 1}si×s′2i+1 such that
mult(s, b, c) is non-zero and each element in L will
be a polynomial of degree less than d with coefficients
in Zpk .
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Algorithm 2 Ahl
← Initialize_PhaseOne(Ŵi+1,A f3 , l(z))

Input: Multilinear Ŵi+1 ∈ GR(pk, d)[X1, · · · , Xs′i+1
], initial bookkeeping table AŴi+1

, random polynomial

vector l : GR(pk, d)→ GR(pk, d)si .
Output: Bookkeeping table Ahi+1

1: procedure L(z)← Precompute(l(z))
2: Set L[0](z) = 1
3: for i = 0, · · · , si − 1 do
4: for x ∈ {0, 1}i do
5: L[x, 0](z) = L[x](z) · (1− li(z))
6: L[x, 1](z) = L[x](z) · li(z)
7: ∀b ∈ {0, 1}s′i+1 , set Ahi+1

[b](z) = 0

8: for every (s, b, c) ∈ {0, 1}si×s′2i+1 such that ˆmult(s, b, c) is non-zero do
9: Ahi+1

[b](z) = Ahi+1
[b](z) +L[s](z) · ˆmult(s, b, c) ·AWi+1 [c]

10: return Ahl

Algorithm 3 Ahl
← Initialize_PhaseTwo( f1, l(z), rb)

Input: Multilinear f1 ∈ GR(pk, d)[X1, · · · , Xl′ ] random polynomial vector l : GR(pk, d) → GR(pk, d)l′ and
random rb ∈ GR(pk, d)l′ .
Output: Bookkeeping table A f1

1: L(z)← Precompute(l(z))
2: Rb ← Precompute(Rb)

3: ∀y ∈ {0, 1}l′ , set A f1 [y](z) = 0.
4: for every (s, x, y) such that f1(s, x, y) is non-zero do
5: A f1 [y](z) = A f1 [y](z) +L[s](z) ·Rb[x] · f1(s, x, y)

6: return A f1

Phase two With phase one we have the tools to
prove in O(2M′s n) time the correctness of the sum

∑
x∈{0,1}M′s

f̂2(x)ĥl(x, z)

by using the the bookkeeping tables A f2 and Ahl .
Now we just need to prove the correctness of

ĥl(rb, z) = ∑
y∈{0,1}M′s

f̂1(l(z), rb, y) f̂3(y)

for the rb ∈ GR(pk, d)M′s chosen by the verifier. To do
this, we just need to compute the bookkeeping tables
for each function in the sum.

Computing A f3 is easy as it’s again the multilinear
extension of an array and therefore we can do the
same we did for f2.

We will now need to compute the bookkeeping
table that stores f1(l(z), rb, y) for all y ∈ {0, 1}M′s . To
do this we will rewrite

f1(l(z), rb, y) = ∑
(s,x)∈{0,1}M′s

I(l(z), s)I(rb, x) f1(s, x, y)

which is true by uniqueness of the multilinear exten-
sion.

Now we just need to compute Rb and L(z), the ar-
rays that have the evaluations of I(rb, x)∀x ∈ {0, 1}M′s

and I(l(z), s)∀s ∈ {0, 1}M′s respectively. Computing
L(z) has already been done in Algorithm 2 and we
can compute Rb the same way.

Once we have all this, computing the bookkeeping
table for f1 is easy and can be seen in Algorithm 3

With all the bookkeeping tables, we can run Al-
gorithm 1 to compute in time O(2M′s n log n) =
O(2Ms log n) all the values needed to later run the
sumcheck in O(2M′s n log n) = O(2Ms log n) time.

Complexity analysis With this new version of the
protocol we will have reduced greatly the prover time
for each sumcheck down to O(2Ms n) giving us an
overall prover complexity of the GKR protocol of

O(m2Ms n)

This new complexity reduces a factor of

O(
23Ms Ms log2 n

n ) the cost of the naive approach and
has an overhead factor in comparison to the classic
GKR over Fields of O(n), the security parameter.
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7 Discussion

In this section, we discuss some potential improve-
ments for Sailor and some ideas on how to continue
the construction of protocols over rings.

Improving GKR prover time: The current prover
time for the GKR over Zpk is O(nS), which has a
O(n) overhead factor in respect to the version over
fields.

This O(n) factor could be reduced to O(log n) if
a faster way to evaluate ϕ and ψ from the RMFE is
found. The current method is using the functions
linearity and after computing the image of the canon-
ical basis, a matrix vector product is needed. This
means that after the precomputing phase, one image
can be computed in O(n2) time. Matrix vector prod-
uct optimization is a well known problem and has
been reduced to O(n2/(ε log n)2) in [22], nonetheless
it seems like removing this quadratic factor on the
numerator might not be possible.

Another approach could be to work over the Galois
Ring in a non canonical basis, such that the matrix
representation of the RMFE in that basis was diago-
nal. This would enable a linear computation of RMFE
images, but this will turn element-wise multiplica-
tion more expensive as we will have to work in this
basis during the protocol. It will also increase the
ψ computation complexity, although that might not
be an issue as this is at most computed O(nm) times
throughout the protocol.

Finally another approach would be to find an
RMFE with a very sparse ϕ matrix representation.
Since it’s construction is fairly complex, finding a
sparse one might be challenging.

Improving GKR verifier time: Even though in
secure computation protocols prover time and suc-
cinctness are prioritized over the verifier time, it is
also important to try to reduce it as much as possi-
ble. Our protocol introduces a big overhead when
it comes to this aspect, as the verifier is not able to
use the batching of the parameters to reduce a O(n)
factor it’s complexity, like the prover can do. It is left
as a future problem to reduce this verifier complexity
overhead to a minimum.

Other ZKP protocols over Z2k : While bilinear pair-
ings might not be possible to construct over Z2k or
Galois Rings, and therefore making it challenging
to build some of the most used protocols, it is pos-
sible to have a Galois Ring version of the discrete
logarithm.

If we have GR(2k, d) such that 2d − 1 is a prime
number (known as the Mersenne primes), then the
set S = {1, ξ, ξ2, · · · , ξ2d−2} is a multiplicative sub-
group of order 2d − 1. This might give us a discrete
logarithm for large primes, nonetheless, it’s structure

coming from the Galois Rings might make this as-
sumption weaker in comparison to any construction
over elliptic curves.

With this assumption it is possible to construct a
polynomial commitment scheme over GR(pk, d) with
a similar structure as the IPA Based presented in
Bulletproof [23].

On the other side, many cryptographic protocols
rely on randomness to provide soundness, and this
is a major source of problems when working with
RMFE as we have seen in this paper. If the random-
ness is chosen in the original ring, then soundness is
generally lost, and if it is chosen in the Galois Ring,
then we can’t use the RMFE to bring back any values
to the original ring. In Sailor a solution to this prob-
lem is presented by choosing the randomness as a
polynomial with coefficients in the original ring such
that it goes through the desired point in the Galois
Ring. This can be easily extrapolated to many scenar-
ios and might help in future protocol constructions
over rings of the form Zpk .
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